MASTER COPY

KEEP THIS COPY FOR REPRCDUCTION PURPOSES

-

REPORT DOCUMENTATION PAGE

'k Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information 1s estimated to average | hour per response, including the ume for

coilection of information, including suggestions for reaucing this burden. to Washington Headguarters Services, Directorate

reviewing instructions, searching existing data sources,

athering and maintaining the data needed, and compieting and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
g 9 9 '-‘?

or tnformation Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302. and 10 the Oftfice of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, 0C 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE

3. REPORT TYPE AND DATES COVERED
Reprint

. TITLE AND SUBTITLE

Title shown on Reprint

S. FUNDING NUMBERS

DAALOI 9 |~F-02:5]

. AUTHOR(S)

Author(s) listed on Reprint

. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

JM?)//?» 12050~ 9397

8. PERFORMING ORGANIZATION
REPORT NUMBER

. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U. S. Army Research Office
P. 0. Box 12211
Research Triangle Park, NC 27709-2211

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

Ao 29)471.10-MA

11. SUPPLEMENTARY NOTES

The view, opinions and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

12a. DISTRIBUTION/ AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

ABSTRACT ON REPRINT

950203 220

14. SUBJECT TERMS

15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION] 18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
;;ﬁr&ged by ANSI Std. 239-18

‘Scalable Software Tools for Adaptive Scientific
Computation*

Boleslaw K. Szymanski, Can Ozturan, and Joseph E. Flaherty
Department of Computer Science, Rensselaer Polytechnic Institute
Troy, New York 12180-3590, USA

Abstract

With a constant need to solve scientific and engineering problems of ever
growing complexity, there is a corresponding need for software tools that assist
in generating solutions with minimal user involvement. Parallel computation is
becoming indispensable in solving the large-scale problems that arise in science
and engineering applications. Adaptivity is at the center of efficient methods for
solving partial differential equations often used in such applications. Yet the use
of paralle] computation and adaptive techniques is limited by the high cost of
developing the needed software. To overcome this difficulty, we advocate a com-
prehensive approach to the development of scalable architecture-independent
software for adaptive solutions of partial differential equations.

Our approach is based on program decomposition, parallel computation
synthesis and run-time support for adaptive computations. Parallel program
decomposition is guided by the source program annotations provided by the
user. A family of annotation languages has been designed for this purpose.
The synthesis of parallel application is based on configurations that describe
overall computation and interaction of its components. Run-time support is re-
sponsible for redistributing data and computation during program execution in
response to changing computational needs of different subregions during adap-
tive solution. Adaptive finite difference and finite element procedures tuned to
a specific size and type of parallel architecture will be synthesized from compo-

_nents of a decomposed source programs. In this paper, we discuss annotations
and configurations suitable for parallel programs written in FORTRAN or in
the functional parallel programming language called EPL.

*This work was partially supported by National Science Foundation under grants CCR-8920694
and CDA-8805910

1 Introduction

Several problems listed as “grand challenges” of the Federal High-Performance Com-
puting Program (16] involve the solution of complex multi-dimensional steady and
transient partial differential equations. As the mathematical models include more
realistic effects, all of these problems exceed the capabilities of current computer sys-
tems. We believe, as others do, that computer performance in the needed range of
teraflops can be attained only through massive parallelism. However, raw computing
power alone is not sufficient to solve a complex problem. We must ensure that (i)
adequate mathematical models are used, (ii) reliable numerical methods are employed
to approximate these models, (iii) accurate parallel implementations of the methods
are executed, (iv) results are within prescribed numerical accuracy, and (v) parallel
implementations use the available computational power efficiently.

Adaptivity, with its associated error estimation and shrewd use of computation
only in regions where accuracy requirements are not satisfied, provides the needed
numerical reliability and efficiency. Adaptive solutions often converge at rates that
are much higher than those obtained by conventional methods using a single grid. At
the same time, adaptive methods are challenging from the point of view of program-
ming complexity because they use sophisticated data structures, recursion, run-time
domain and method selection, etc. Parallelism adds to this challenge because software
development for parallel architectures is more complex than for sequential machines
due to the increased complexity of assuring parallel program correctness and effi-
ciency. Parallel program correctness requires the results to be independent of the
number and speed of the processors. This scalability requirement can be satisfied
only if the paralle]l tasks are independent of each other or properly synchronized
when a dependence exists. Synchronization design and verification are the major
source of difficulty in assessing parallel program correctness. Different categories of
parallel architectures have led to a proliferation of dialects of standard computer
languages. Varying parallel programming primitives for different parallel language
dialects greatly limits parallel software portability. Clearly, the large efforts required
to develop and implement parallel adaptive solution techniques have hampered their
widespread application by scientists and engineers. In addition, poor portability of
parallel programs has resulted in duplication of effort and has limited the use of
developed systems.

The aims of scientific computation are to further understanding of natural phe-
nomena by implementing and executing mathematical models when experiments
would be impractical and/or to supplement experiments when direct measurements
are not possible. Large-scale computation requires high performance parallel archi-
tectures and efficient program implementation to attain acceptable execution times.
To facilitate scientific parallel program development, there is a need for software tools
that will support efficiency as well as:

scalability - the same mathematical models and numerical algorithms are often used

160

in computations with different accuracy and size and executed with a variable
number of processors; hence, the cost of the algorithms used in the software
tools should increase slowly with the increase in the number of processors used
(e.g. the cost function is poly-logarithmic in the number of processors used),

reusability - basic numerical algorithms frequently appear in different models and
different computations,

extensibility - interactive development and stepwise refinement of mathematical
models describes an implementation of the new models in terms of changes to
the old model.

Design methodology of software tools with the above properties is currently a research
goal of great importance. Our approach to such design methodology is based on de-
composition and scalable synthesis of parallel programs for scientific and engineering
computation. The goal is to enable the users to describe high-level features of a par-
allel computation and to synthesize computation from numerical algorithms, program
fragments, and data structures that are separately implemented. Such decomposition
and synthesis can support (i) parallel task formulation and allocation, (ii) data dis-
tribution, (iii) run-time optimization, and (iv) rapid prototyping of different parallel
implementations.

G N Gl
\
~
.
XD

.

————— -
»
Program Componsnss
program irngrasas, data

— . |§ __ Sealabla Library
ﬁ;‘.— Configurasce/Synthasi ser)<......(L|.m)(.. p:ur .

Figure 1: Software tools and their use

161

The summary view of our approach is given in Figure 1. Program components
are created by annotating source programs in FORTRAN or in the functional paral-
lel programming language EPL [14]. FORTRAN programs are transformed into an
equational form before decomposition. The configuration definition guides the syn-
thesis of the components into a parallel computation. The synthesized computation
together with the architecture description is used by the code generator to produce
an object code customized for the target architecture. In the future, we will add a
scalable library and an associated librarian to increase versatility of the system. In
Figure 1, continuous lines describe implemented paths of the system, broken lines
represent paths currently under construction, and dotted lines correspond to paths
at an early stage of investigation.

This paper is intended as an overview of the research done towards implementing
software tools as envisioned in Figure 1. More technical discussion can be found
elsewhere 4, 10, 13, 14, 15].

The paper is organized as follows. Annotations and program decomposition are
discussed in Section 2. Program synthesis and the design of the configurator are
presented in Section 3. A dynamic load management strategy for adaptive scientific
computation on SIMD architectures is a topic of Section 4. Finally, conclusions are
outlined in Section 5.

2 Annotations

Annotations provide an efficient way of introducing user’s directives for assisting the
compiler in parallelization. To be effective, annotations have to be carefully limited to
a few constructs. They also should preserve semantics of the original program. In our
approach, annotations are introduced solely to limit the allocation of computations to
processors. Hence, programs decorated with annotations produce the same results as
unannotated program. Consequently, sequential programs that have manifested their
correctness over many years of usage are good candidates for parallelization through
annotations. By being orthogonal to the program description, annotations support
rapid prototyping of different parallel solutions.

2.1 Annotations in EPL

In EPL, each equation can be annotated with the name of the virtual processor on
which it is to be executed. Virtual processors can be indexed by the equation’s
subscripts to identify instances of equations assigned to individual virtual processors.
Equation instances annotated by the same virtual processor constitute the smallest
granule of parallel computation. An example of the use of EPL annotations in a
program for the LU decomposition of a matrix is shown in Figure 2.

162

int: n; /* array size */
real: Ain[*,*],U[*,*],L[*,*];
subscript: i,j;

range.Ain=n; range(2).Ain=n; range.U[j]=j-1; range.L[i}=i;

T[i,jl:Alk,ij] = if k==1 then Ainli,j]
else if i==Piv[kk] then A[k-1,Piv[k,k],j]-L[i,k-1}*U[k-1,j};
else A[k-1,i,j]-L{i,k-1]*U[k-1,j];
D[j): L[j,k] = if j==k then 1
else Alk,j,k]/Ulk,k];
D[j}: Ulk,j] = Alk,Piv[kk]j];
D[i}): Piv[k,i] = submax(abs(A[k,i,k]),i:i>=k);

Figure 2: LU decomposition of a matrix A in EPL

2.2 Annotations in FORTRAN

As in EPL, the notion of a virtual processor has been introduced in annotations of
FORTRAN programs. FORTRAN annotations define blocks of statements associated
with a virtual processor, each virtual processor defining a parallel task. Such tasks
may include synchronization statements, if they encompass disjoint blocks. FOR-
TRAN virtual processors can have subscripts associated with them to indicate repe-
tition. An example of an annotated FORTRAN segment for the LU decomposition
of a matrix is shown Figure 3. The scope of the block extends from the point of
definition in the program to the statement labeled 10. In this example, a vector of
virtual processors main, each associated with a single loop body, is defined. Blocks
can also be nested in each other. Such nesting defines a hierarchy of blocks and helps
in global program optimization.

Each virtual processor produces data, typically used by other virtual processors,
and in turn consumes data produced by others. Performing data-dependence analysis
in a style of PTRAN [12], the annotation processor can find the dependencies local
to each block and data structures produced and consumed by the block. All data
produced by the block are placed in the memory of the corresponding virtual pro-
cessor. The created parallel tasks are extended by communication statements needed
to move data. Parallel tasks associated with virtual processors at the bottom of the
block hierarchy are the smallest components used in the program synthesis. An im-
portant step towards an efficient parallelization of FORTRAN programs involves an
equational transformation during which the equational equivalent of the program is
generated. The transformed programs obey the single assignment rule and do not

163

PARAMETER (N = 50)
REAL A(N,N), TEMP
INTEGER IPIV(N)

DO :: main 10 K =1, N-1

IPIV(K) = K
DO :: pivot 20 L = K+1,N
20 IF (ABS{A(IPIV(K), K)} .LT. ABS(A(L, K)) IPIV(K) = L

DO :: swap 30L =K, N
TEMP = A(K, L)
A(K, L) = A(IPIV(K), L)

30 A(IPIV(K), L) = TEMP
DO :: lower 40 L = K+1, N
40 A(L, K) = A(L, K) / A(K, K)

DO :: up_update 10 L = K+1, N
DO 10 M =K+1,N
10 AM,L)y=AM,L)- AM,K)*A (K, L)
IPIV(N)=N
STOP
END

Figure 3: LU Decomposition of a matrix A in FORTRAN

contain any control statements [5]. The transformation is done in the following steps:
Reassignments Elimination: The reassigned variables are replaced by:

o vector (additional dimension) - inside loops,
e variants — in “if” branches and basic blocks.
Condition Analysis: Conditions in the transformed program are analyzed using a

Sup-Inf inequality prover [4] and the Kaufl variable elimination method [8] to
find pairwise equivalent or exclusive conditions.

Variable’s Variants Elimination: Variable variants created in equivalent and ex-
clusive conditions are merged into a single variable.

Additional Dimension Elimination: Memory optimization is performed to re-
place entire dimensions by windows of few elements for multidimensional vari-

ables [15].

The transformed FORTRAN program is then compatible with the programs pro-
duced by annotating EPL programs.

164

2.3 Annotation Processing

Annotation processing includes:
e creating parallel tasks defined by annotated fragments of an original program,
e declaring ports needed to interconnect created tasks into a network,

e building task communication graph that show data dependences between cre-
ated tasks.

To translate the annotated program into an efficient collection of parallel tasks, it
is necessary to embed a spanning tree into the tasks communication graph [11]. The
following three criteria are used in selecting such an embedding:

¢ Dimension nesting: If two tasks with different dimensionalities are connected
in the task communication graph, the task with more dimensions should be
located lower in the spanning tree. If, for example, tasks T[1] [j] were located
above the tasks D[j] in the spanning tree, the addressing and creation of child
tasks in T would involve executing an if-then statement in all ¢ * j T tasks.

e Range nesting: Whenever possible, tasks sharing the same range should be
clustered together in the spanning tree. Variables that share ranges tend to
appear in the same equations. Thus, clustering such variables together decreases
the number of cross-process references to distributed variables.

e Data flow: The total communication cost of the selected spanning tree should
be the smallest among all spanning trees satisfying the above two criteria.

Let G(V,E) be a task communication graph with a set of nodes V (representing
processors) and a set of edges E C V x V representing communication. With each edge
e;,j € E we will associate the cost c(ej; ;) that represents the volume of data being
sent from the processor i to the processor j. With each spanning tree T, we will also
associate the distance d"(e; ;) that defines the minimum number of tree edges that
have to be traversed on the path from task i to task j . The cost of the spanning tree
T can then be defined as:

C(T)= 3 clei;)+d (ei;)
e ;€EE

To minimize the total communication cost we need to find a proper cut-tree, which
can be done by solving | V | maximal flow problems. Each maximal flow problem re-
quires 0(| V |*) applications of the Ford-Fulkerson labeling procedure. Hence, finding
the solution takes 0(| V |*) steps.

Trees created from annotations of LU decomposition programs are shown in Figure
4 (for EPL and FORTRAN programs).

165

Figure 4: Communication tree for EPL and FORTRAN programs

3 Program Synthesis

In our approach a parallel computation is viewed as a collection of cooperating com-
ponents. The components are defined during the program decomposition. Their
cooperation requires an additional description, called a configuration. The configura-
tion guides the process of synthesis. For example, components of the configuration
that communicate frequently can be synthesized into a single task. The ratio of
physical processors to virtual processors dictates how virtual tasks are to be mapped
onto the target architecture. Usually, different annotations result in different config-
urations and, hence, cause different code to be generated. The user can, therefore,
experiment with various annotations to find the one that results in the most efficient
code. The configurator uses the dependence graph created during configuration anal-
ysis to generate an architecture-independent parallel description which is fed to the
code generator.

Configurations define tasks (and their aggregates) and ports. Statements of the
configuration represent relations between ports in different tasks. Some of this state-
ments are generated during decomposition (at the subprogram level), others can be
supplied by the user (when the programs are integrated into a computation).

Tasks created dynamically can communicate with ports located at parent, child,
and sibling tasks (each of those tasks is just a copy of the same program or program
fragment, except that a parent task can be arbitrary).

The goal of configuration processing is to establish scheduling constraints for the
overall computation. In the parallel computation, individual process correctness is a
necessary but not sufficient condition for the correctness of the entire computation. If

1€6

a task has input/output ports that belong to a cycle in the configuration graph, then
this task’s input messages are dependent on the output messages. Such dependences
(in addition to dependences imposed by the statements of a task) have to be taken
into account in generating the object program for individual tasks; otherwise, loss of
messages, process blocking, or even a deadlock can arise.

The algorithm for finding external data dependences has been presented in [13]. It
produces configuration dependence file used by the synthesizer and the code generator.
This file contains a list of the additional, externally imposed data dependences (edges
and their dimension types) that need to be added to the task array graph. One task
may have several such files, each associated with the different configuration in which
this task participates. '

4 Run-Time Task Distribution

One of the most challenging problems encountered while implementing adaptive sci-
entific computations on distributed memory machines is run-time mapping of a dy-
namically changing computational load onto the parallel processors. The published
solutions to this problem focus mostly on MIMD architectures and coarse grain par-
allelism [3]. Recently the following Rectilinear Partitioning Problem (RPP) has been
considered in [9]: Partition the given n x m workload matrix into (N +1) x (M +1)
rectangles with NV + M rectilinear cuts in such a way that the maximum workload
among rectangles is minimized. Such optimization is appropriate for adaptive finite
element computations on architectures with local communication that is faster than
global. Since balanced partitions tend to increase the volume of local vs. global
communication, solution to RPP decreases the overall communication costs.

In {10] we investigated adaptive scientific computations on SIMD machines, the
problem with similar motivation and applications as RPP [9]. Unlike RPP however,
in which the sum of the weights is taken as the cost of a rectangle, we measure the
rectangular costs as the ratio of workload to the area of the rectangle that represents
the number of processors active in that rectangle. Our approach is motivated by the
mesh refinement techniques of the considered adaptive methods and the newly intro-
duced coordinated parallelism on the CM-5 computer. In coordinated parallelism a
machine can be partitioned into several parts each running SIMD code. The work-
load redistribution results in regions that have different time-step and/or grid size;
therefore, the same computation is nested in loops with different boundaries. That
means that each region either has to be done on the whole machine (sequentially, one
after the other on the CM-2) or in a separate partition (in parallel on the CM-5).
Each entry in the workload matrix represents the error in the solution obtained by an
error estimation procedure {2]. The high-error regions need recomputing to the extent
that is proportional to the magnitude of the error. Hence, the number of processors
reassigned to each solution region should be proportional to the refinement factor.

Consider a load balancing problem as illustrated in Figure 5 for a one-dimensional

167

erroe distribution in the solution

[v s — — — o o — — —

a b [d

i\ N

O I A T O A I O O i [1
processor arrwy

Figure 5: Example of partitioning in one-dimension

problem. The uniform mesh yields the solution with a high error in the interval
b < z £ ¢ and within the required accuracy in intervals a < z < band ¢ < z < d.
Takmg the magnitude of an error as an estimate of the work w; for each element
¢t = 1,...,n, we assign a small weight ¢ << maz;{w;} to work estimate in regions
a<z S b and ¢ £ = < d. To balance the workload, the majority of the processors
should be assigned the interval b < z <.

In adaptive solutions of partial differential equations parallel tasks perform ba-
sically the same computation over different spatial subdomains (intervals for one-
dimensional problems) and with different discretization parameter Az. Let K denote
the number of such tasks. It is important to keep this number small for the following
reasons. The subdomain interactions are proportional to the number of existing sub-
domains and in higher dimensions such interactions require time-consuming global
communications. In each time step of the subdomain computation, a fraction of ex-
ecuted code is subdomain specific (e.g. in hyperbolic equations the time step has
to be set differently in each subdomain). For purely SIMD machines, execution of
this code fraction has to be done in K consecutive stages. In each stage, processors
in one subdomain are executing while processors belonging to the remaining K — 1
subdomains remain idle!. Therefore, each subdomain associated with a parallel task
should represent a localized structure in the solution domain.

Figure 6(a) shows an example of the more difficult two-dimensional case in which
a coarse mesh is trivially mapped to the processor mesh. In regions A and B, the
mesh must be refined due to the presence of high errors. Hence, we have to spread
sub-domains A and B over bigger rectangular sub-sets of processors to improve load
balancing as in Figures 6(b) and (c).

If we are employing mesh-movement or static rezone techniques, the mesh elements
are moved into high-error regions. A global solution strategy will refine the high-
error regions and repeat the entire step of the iteration. Consequently, we will need
a re-assignment of processors. A local solution strategy, on the other hand, repeats

1For more general architectures, capable of coordinated parallelism mode of execution (i.e. CM-
5), all K subdomains will be able to execute this fraction of code in parallel.

168

the iteration only where it is needed. Hence, local refinement results in less direct
computation and enables more processors to be assigned to regions A and B. However,
local refinement requires more interactions between the local and global solutions.
Such interactions involve global communication that can outweight the benefits of
an adaptive procedure. Global solutions and mesh-movement techniques require less
interactions of this kind. Careful buffering of the high-error regions can increase
the number of iterations executed before regridding or mesh movement is needed.
This will in turn decrease the frequency of the needed load balancing. It is this
global mesh-refinement and mesh movement techniques executed on a mesh connected
architectures that motivated us to develop density-type partitioning.

c
g B
A
D
(b)
T
A B E

© @

Figure 6: (a) Coarse mesh with high error regions A and B, (b) repartitioning with
global refinement (c) repartitioning with local refinement (d) Nicol’s partitioning

It should be noted that applying Nicol’s [9] partitioning methodology RPP to the
example shown in Figure 6(d) results in assigning unnecessary processors to regions
C and D. To avoid such waste, we did not restrict our partitioning methodology to
rectilinear cuts extending across the whole domain in both dimensions. Instead, in
our problem definition and solution [10], we require that K selected rectangles cover
the whole domain. The heuristics for the two-dimensional case projects the weights
to one-dimension and results in rectilinear cuts extending across the whole dimension
in one direction. Figure 6(b) shows an example of this kind of partition.

169

Let Py be a set of partitions of a one-dimensional workload array w;, t =1,...,n
into K subintervals (zy,,zs,), where 1 < z;, <z, < n, k=1,...,K. The one-
dimensional workload partitioning problem can be then stated as:

T2,

@{@{m};(zh,%) k:l,...,KGPK} (1)

As shown in Table 1, selecting different meaning for operations @ and ® we
can obtain different optimization problems from this formulation. For @ = min,
® = maz and f(z,,z;,) = 1 we obtain the Nicol’s problem that has solutions of
complexity O(Kn) and O(n + (Klogn)?) [9].

Problem [1® | flzi, z2) e Je |
Nicol's 1D
partitioning | min | maz | 1 oo | 0
Density-type
for PDEs min | mazr | (z2, —z;, +1) | 00 | 0
Shortest
path with k | min | + 1 oo |0
arcs

Density-type
for PDEs mar | min | (2o, —2;, +1) | 0 | o

Table 1: Instances of problem represented by equation (1)

The problem involving load balancing for adaptive PDE solvers discussed in this
section is obtained for @ = min, @ = maz and f(zy,,2s,) = (22, — 21, + 1), i.e.,
we divide the sum of the workloads in each partition by the interval length (i.e., the
number of processors). There is a similarity between the weighted independent set
for interval graphs and our problem [7]. The interval graph for our problem can be
created by having a node representing one of the possible subintervals (z1,, T2,) with
the weight ZZ’;“ wi/ f(z1,,z2,) and edges representing the intersections between the
subintervals. In such a graph, the independent set of size K which covers the whole
interval, 1,...,n, gives the solution to the original problem. We convert that interval
graph to a directed acyclic graph (DAG) and apply the shortest path algorithm to
find the minimum weight dominating set [10]. This approach results in the optimal
algorithm for the one-dimensional case and leads also to a heuristic algorithm that
can be easily generalized to two dimensions (by projecting the workloads to one
dimension).

5 Conclusion

Our approach is based on the following presumptions:

170

o Adaptivity is at the center of efficient methods for solving partial differential
equations.

¢ Annotations provide an easy and efficient way for parallelization of existing
codes.

e Absence of control statements simplifies program analysis and increases the
compiler ability to produce an efficient parallel code.

® Most parallel code optimization problems are NP-hard; hence, development of
proper heuristics is important.

e A hierarchical view of parallel computation is helpful in extracting functional
parallelism.

Program decomposition through annotations and computation synthesis through
configuration can support efficient parallel code generation for domain-specific compu-
tation. Adaptivity, with its associated error estimates and shrewd use of computation
only in regions where accuracy requirements are not satisfied, can provides the needed
numerical reliability and efficiency to parallel computation. Massive parallelism com-
bined with adaptivity offers a promise of true breakthroughs that will allow scientists
and engineers to solve the most demanding problems with available resources.

Our research on scalable program synthesis is in its early stages and many issues
remain unexplored. Future work on program synthesis should include more work
on run-time code optimization. Large applications will measure the efficiency of the
generated solutions.

References

[1] Baber, M.: The Hypertasking Paracompiler - Parallelizing the Game of Life and
Other Applications. Supercomputing Review. 3, 41-47 (1991)

(2] Flaherty, J. E., Paslow, P. J., Shephard, M.S. and Vasilakis, J. D., (eds) Adaptive
Methods for Partial Differential Equations, SIAM, Philadelphia, 1989.

(3] Berger, M.J., and Bokhari, S.H.: A Partitioning Strategy for Nonuniform Prob-
lems on Multiprocessors. IEEE Trans. on Computers. C-36, 570-580 (1987)

[4] Bruno, J., and Szymanski, B.K.: Analyzing Conditional Data Dependencies in
an Equational Language Compiler. Proc. 3rd Supercomputing Conference 1988,
Boston, MA, pp. 358-365. Tampa. FL: Supercomputing Institute 1988

[5] Ge X., and Prywes, N.S.: Reverse Software Enginnering of Concurrent Programs.
Proc. 5th Jerusalem Conference on Information Technology 1990, Jerusalem, pp.
731-742. Washington, DC: IEEE Computer Science Press 1990

171

(6] Gelernter, D., and Carriero, N.: Coordination Languages and their Significance.
Comm. ACM. 35, 97-107 (1992)

[7] Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. New York.
NY: Academic Press 1980

[8] Kaufl, T.: Reasoning about Systems of Linear Inequalities. In: Ninth Inter-
national Conference on Automated Deduction. Aragon. IL, Lecture Notes in
Computer Science, pp. 563-72. Berlin-Heidelberg-New York: Springer 1988

[9] Nicol, D.M.: Rectilinear Partitioning of Irregular Data Parallel Computations.
ICASE NASA, Report 91-55, 1991

[10] Ozturan, C., Szymanski, B.K., and Flaherty, J.: Adaptive Methods and Rectan-
gular Partitioning Problem. Proc. Scalable High Performance Computing Con-
ference 1992, Wilmington. VA, pp. 409-415. Washington. DC: IEEE Computer
Society Press 1992

[11] Ozturan, C.: Expressing Parallelism in EPL. Rensselaer Polytechnic Institute,
Tech. Report No. 90-29, December 1990

(12] Sarkar, V.: PTRAN - The IBM Parallel Translation System,” In: Parallel Func-
tional Languages and Compilers (B.K. Szymanski, ed.). pp. 309-391. New York.
NY: ACM Press 1991

(13] Spier, K., and Szymanski, B.K.: Interprocess Analysis and Optimization in the
Equational Language Compiler. In: CONPAR-90. Lecture Notes in Computer
Science, pp. 287-98. Berlin-Heidelberg-New York: Springer 1990

[14] Szymanski, B.K.: EPL - Parallel Programming with Recurrent Equations. In:
Parallel Functional Languages and Environments (B.K. Szymanski ed.). pp. 51-
104. New York. NY: ACM Press, 1991

[15] Szymanski, B.K., and Prywes, N.S.: Efficient Handling of Data Structures in Def-
initional Languages. Science of Computer Programming. 10, pp. 221-245 (1988)

[16] Walker, T.M. The Federal High Performance Computing Program. Comput. Res.
News 1, (1989).

